Register for a free trial
Offshore Wind Journal

Offshore Wind Journal

Offshore turbines vulnerable to Category 5 hurricanes, report claims

Tue 13 Jun 2017 by David Foxwell

Offshore turbines vulnerable to Category 5 hurricanes, report claims
Under Category 5 conditions, mean wind speeds could reach 90m/second, well in excess of the 50m/second threshold set by current standards

Offshore wind turbines built to current standards may not be able to withstand the powerful gusts of a Category 5 hurricane, according to research conducted at the University of Colorado Boulder.

The study, which was conducted in collaboration with the National Center for Atmospheric Research in Boulder, Colorado, and the US Department of Energy’s National Renewable Energy Laboratory in Golden, Colorado, highlights the limitations of current turbine design and could provide guidance for manufacturers and engineers looking to build more hurricane-resilient turbines in the future.

Turbine design standards are governed by the International Electrotechnical Commission (IEC). For offshore turbines, no specific guidelines for hurricane force winds exist. For the study, CU Boulder researchers set out to test the limits of the existing design standard. Due to a lack of observational data across the height of a wind turbine, they instead used large-eddy simulations to create a powerful hurricane with a computer.

“We wanted to understand the worst case scenario for offshore wind turbines, and for hurricanes, that’s a Category 5,” said Rochelle Worsnop, a graduate researcher in CU Boulder’s Department of Atmospheric and Oceanic Sciences (ATOC) and lead author of the study.

These high-resolution simulations showed that under Category 5 conditions, mean wind speeds near the storm’s ‘eyewall’ reached 90m/second, well in excess of the 50m/second threshold set by current standards.

“Wind speeds of this magnitude have been observed in hurricanes before, but in only a few cases, and these observations are often questioned because of the hazardous conditions and limitations of instruments,” said George Bryan of NCAR and a co-author of the study. “By using large-eddy simulations, we are able to show how such winds can develop and where they occur within hurricanes.” 

Current standards do not account for veer, a measure of the change in wind direction across a vertical span. In the simulation, wind direction changed by as much as 55 degrees between the tip of the rotor and its hub, creating a potentially dangerous strain on the blade.

The researchers say the findings could be used to help windfarm developers improve design standards and to help stakeholders make informed decisions about the costs, benefits and risks of placing turbines in hurricane-prone areas.

“The study will help inform design choices before offshore wind energy development ramps up in hurricane-prone regions,” said Worsnop, who received funding from the National Science Foundation Graduate Research Fellowship Programme to conduct this research. “We hope that this research will aid wind turbine manufacturers and developers in successfully tapping into the incredibly powerful wind resource just beyond our coastlines.”

“Success could mean either building turbines that can survive these extreme conditions, or by understanding the overall risk so that risks can be mitigated, perhaps with financial instruments like insurance,” said Professor Julie Lundquist of ATOC and CU Boulder’s Renewable and Sustainable Energy Institute, a co-author of the study.

“The next stage of this work would be to assess how often these extreme winds would impact an offshore windfarm on the Atlantic coast over the 20-30-year lifetime of a typical windfarm.”

The findings were recently published online in the journal Geophysical Research Letters, a publication of the American Geophysical Union.

Recent whitepapers

Related articles





Knowledge bank

View all